Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2400568, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582504

RESUMO

Increasing lithium contents within the lattice of positive electrode materials is projected in pursuit of high-energy-density batteries. However, it intensifies the release of lattice oxygen and subsequent gas evolution during operations. This poses significant challenges for managing internal pressure of batteries, particularly in terms of the management of gas evolution in composite electrodes-an area that remains largely unexplored. Conventional assumptions postulate that the total gas evolution is estimated by multiplying the total particle count by the quantities of gas products from an individual particle. Contrarily, this investigation on overlithiated materials-a system known to release the lattice oxygen-demonstrates that loading densities and inter-particle spacing in electrodes significantly govern gas evolution rates, leading to distinct extents of gas formation despite of an equivalent quantity of released lattice oxygen. Remarkably, this study discoveres that O2 and CO2 evolution rates are proportional to 1O2 concentration by the factor of second and first-order, respectively. This indicates an exceptionally greater change in the evolution rate of O2 compared to CO2 depending on local 1O2 concentration. These insights pave new routes for more sophisticated approaches to manage gas evolution within high-energy-density batteries.

2.
Adv Mater ; 35(10): e2207076, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36583605

RESUMO

During solid-state calcination, with increasing temperature, materials undergo complex phase transitions with heterogeneous solid-state reactions and mass transport. Precise control of the calcination chemistry is therefore crucial for synthesizing state-of-the-art Ni-rich layered oxides (LiNi1-x-y Cox Mny O2 , NRNCM) as cathode materials for lithium-ion batteries. Although the battery performance depends on the chemical heterogeneity during NRNCM calcination, it has not yet been elucidated. Herein, through synchrotron-based X-ray, mass spectrometry microscopy, and structural analyses, it is revealed that the temperature-dependent reaction kinetics, the diffusivity of solid-state lithium sources, and the ambient oxygen control the local chemical compositions of the reaction intermediates within a calcined particle. Additionally, it is found that the variations in the reducing power of the transition metals (i.e., Ni, Co, and Mn) determine the local structures at the nanoscale. The investigation of the reaction mechanism via imaging analysis provides valuable information for tuning the calcination chemistry and developing high-energy/power density lithium-ion batteries.

3.
ACS Appl Mater Interfaces ; 13(44): 52202-52214, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34726369

RESUMO

SiOx (x ≈ 1) is one of the most promising anode materials for application in secondary lithium-ion batteries because of its high theoretical capacity. Despite this merit, SiOx has a poor initial Coulombic efficiency, which impedes its widespread use. To overcome this limitation, in this work, we successfully demonstrate a novel synthesis of Mg-doped SiOx via a mass-producible physical vapor deposition method. The solid-state reaction between Mg and SiOx produces Si and electrochemically inert magnesium silicate, thus increasing the initial Coulombic efficiency. The Mg doping concentration determines the phase of the magnesium silicate domains, the size of the Si domains, and the heterogeneity of these two domains. Detailed electron microscopy and synchrotron-based analysis revealed that the nanoscale homogeneity of magnesium silicates driven by cycling significantly affected the lifetime. We found that 8 wt % Mg is the most optimized concentration for enhanced cyclability because MgSiO3, which is the dominant magnesium silicate composition, can be homogeneously mixed with silicon clusters, preventing their aggregation during cycling and suppressing void formation.

4.
Adv Mater ; 33(51): e2105337, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34599774

RESUMO

Understanding the cycling rate-dependent kinetics is crucial for managing the performance of batteries in high-power applications. Although high cycling rates may induce reaction heterogeneity and affect battery lifetime and capacity utilization, such phase transformation dynamics are poorly understood and uncontrollable. In this study, synchrotron-based operando X-ray diffraction is performed to monitor the high-current-induced phase transformation kinetics of LiNi0.6 Co0.2 Mn0.2 O2 . The sluggish Li diffusion at high Li content induces different phase transformations during charging and discharging, with strong phase separation and homogeneous phase transformation during charging and discharging, respectively. Moreover, by exploiting the dependence of Li diffusivity on the Li content and electrochemically tuning the initial Li content and distribution, phase separation pathway can be redirected to solid solution kinetics at a high charging rate of 7 C. Finite element analysis further elucidates the effect of the Li-content-dependent diffusion kinetics on the phase transformation pathway. The findings suggest a new direction for optimizing fast-cycling protocols based on the intrinsic properties of the materials.

5.
J Am Chem Soc ; 143(9): 3383-3392, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33439007

RESUMO

Despite remarkable facileness and potential in forming a wide variety of heterostructured nanoparticles with extraordinary compositional and structural complexity, one-pot synthesis of multicomponent heterostructures is largely limited by the lack of fundamental mechanistic understanding, designing principles, and well-established, generally applicable chemical methods. Herein, we developed a one-pot heterointerfacial metamorphosis (1HIM) method that allows heterointerfaces inside a particle to undergo multiple equilibrium stages to form a variety of highly crystalline heterostructured nanoparticles at a relatively low temperature (<100 °C). As proof-of-concept experiments, it was shown that widely different single-crystalline semiconductor-metal anisotropic nanoparticles with synergistic chemical, spectroscopic, and band-gap-engineering properties, including a series of metal-semiconductor nanoframes with high structural and compositional tunability, can be formed by using the 1HIM approach. 1HIM offers a new paradigm to synthesize previously unobtainable or poorly controllable heterostructures with unique or synergistic properties and functions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...